Tag Archives: extinction

Best of Biodiversity in 2014

By Tsirtalis (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Biodiversity success of 2014! The Island night lizard was delisted under the Endangered Species Act in 2014. Photo by Tsirtalis (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Happy New Year! To put the cap on 2014, we’ve highlighted some of our favorite biodiversity research and stories from the year. We’d love to hear what rocked your 2014 – pass us the link in the comments section!

Hundreds of new species have been described this year all over the world. Here are some of my favorites:

  • A fossilized skull of one of the largest mammals that walked along with the dinosaurs in the Late Cretaceous, was discovered in Madasgcar. The species named Vintana sertichi was a 9kg gondwanatherian herbivore, that reminds me of a coypu. Up to now, the only information we had about gondwanatherian mammals came from teeth and small pieces of jawbones;
  • A new species of annual fish from southern Brazil, Austrolebias bagual (bagual is a term from the Pampas that means untamed, unbroken horse or unsocial);
  • The mushroom looking animals, form the deep oceans of Australia, Dendrogramma.
  • A montane forest dwelling Tapaculo, form northeastern Brazil.
  • And the coolest one; a new species of tree frog from the Amazon has been named after the Prince of Darkness, Ozzy Osbourne.

At last, a couple of species  have been declared extinct in 2014 (for more information see the timeline of extinctions):

  •  Acalypha wilderia small shrub that inhabited the Cook Islands.The species has not been seen since 1929, and it seems that it disappeared due to habitat modification;
  • Stipax triangulifer. This is a “virtually unknown” arachnid species that was collected only once in 1894 in the Seychelles island of Mahe, and was never spotted again.

-Vinicius Bastazini

The Avian Phylogenomics Project, an international team with more than 200 researchers worked in a collective effort to sequence the whole genome of 45 bird species, comprising the main clades of modern birds. The project published 28 papers, in journals like Science, Gigascience and Genome Biology, in just one day! One of their key papers is Jarvis et al., “Whole -genome analysis resolve early branches in the tree of life of modern birds”. Among their main findings are: 1) Two events of speciation happened around 66 mya, just after the dinosaurs went extinct, giving origin to most of the birds we know nowadays; 2) Avian genome is very reduced, with few repetitive DNA; 3) Vocal learning evolved independently, at least twice; 4) Tooth loss happened from lost enamel mutations, around 116 mya. Nonetheless, the most important steps accomplished by the group, is a better representation of the phylogenetic relationship of birds, with some very impressive changes, e.g. falcons are closer relatives to parrots than to other group of prey birds like hawks. Several other fields of biology must benefit from this better solved piece in the puzzle of the tree of life, especially fields like ecology, which in the last years has investigated the phylogenetic structure of communities as a way to understand patterns of diversity on Earth and the processes determining them. Maybe two last very important messages from Jarvis et al. (and the other of papers resulting from this project) are that: 1) basic science (e.g. taxonomy) is an essential tool for the next big steps toward understanding life on Earth; and 2) improvements on scientific knowledge are more and more related to collective efforts of huge networks of scientist and institutions around the world, working together in ambitious projects.

– Jeferson Vizentin-Bugoni

Some of my favorites from 2014:

– Kylla Benes

orange lichen

Forget horses, 2014 has been the year of the lichen. And although most readers are probably uninclined to overthrow thousands of years of Chinese tradition to make it so, I’m here to tell you why it’s worth the effort. Ecologists studying lichens have worked hard this year to push their traditionally esoteric research subject out into mainstream ecology. In honor of 2014’s listicle-mania, here are the top four ways that lichenologists have really broken the mold. You won’t believe what they found…

4. Lichens impact ecosystems at both micro and macroscales. From Porada et al comes a brand-new estimation of how lichens contribute to global biogeochemical cycles. Zooming in, Delgado-Baquerizo et al show that lichen species in biological soil crusts can cause fine-scale variation in the nutrients and microbes that reside under them.

3. Lichens are great for testing general ecological theory and models, both new and old. Pastore et al found no evidence for a competition-colonization tradeoff in the life-history traits of lichens inhabiting rocks over a 30+ year experiment. Time to lay this old idea to rest? From Ruete et al comes a cool new model for estimating dispersal rates in a metapopulation that is at disequilibrium from presence/absence data, patch ages, and past distributions. Because really, when aren’t we in a disequillibrial state? And yes, they tested it with lichens because epiphytes are great models of meta-structure.

2. We have discovered that lichens have traits too! Farber et al found that the performance of lichens with light-absorbing versus light-reflecting pigments recapitulated the distribution of these species along a vertical light gradient in boreal tree canopies. Lichens, however, may be more variable in their traits than plants or animals. Asplund & Wardle found that the community-level response of lichen N and P-content to a nutrient gradient occurs mainly intra-specifically, and not because of species turnover. Perhaps fungi are more flexible?

1. It’s been a great year for lichens’ better half- the algae and cyanobacteria that do all the photosynthesizing in the relationship. Although historically underappreciated by lichenologists, this year saw a barrage of papers exploring diversity of these “photobionts”, from across whole communities and large taxonomic groups (Lindgren et al, Nyati et al, Sadowska-Des et al) to genetic diversity within a single lichen individual (Dal Grande et al). It’s becoming increasingly evident that partner specificity and local adaptation among photobionts is a key determinant of whether a lichen-forming fungal species has a broad (Werth & Sork, Muggia et al) or narrow distribution (Dal Grande et al). With increasing interest in the ecology of microbial systems, the role of symbiosis in the community ecology of lichens is ripe for research. If 2014 was the year of the lichen, 2015 will be for their algae.

– Jes Coyle

2014 by the numbers:

Hero Ant

This is what a hero looks like (Malagidris sofina)

221 – the number of new species described by CalAcademy of Sciences this year. I was particularly charmed by the description of the defensive behavior of the Hero Ant of Madagascar (Malagidris sofina), which hurls itself at invaders, kamikaze-style, knocking them off the nest. See for yourself.

2,218 – Number of plants and animals currently listed as threatened or endangered by the Endangered Species Act. There is an active recovery plan for about half of those.

1 – Number of species delisted under the ESA during 2014. The Island night lizard (Xantusia riversiana), the poster child of this post, was originally listed in 1977, and has benefitted from the removal of invasive mammals from the Channel Islands, and is considered recovered.

90% – Estimated population losses for the Monarch butterfly over the past two decades. They are now being considered for ESA listing.

1.6 million – Area (km²) proposed in 2014 as additions to marine protected areas worldwide, including Fiji, Gabon, Palau, and the US.

– Emily Grason

December 30, 2014

Deconstructing Defaunation

Many species globally are threatened by numerous biotic and abiotic stressors, resulting in declining population and shifts in ecosystem functioning.

Many species globally are threatened by numerous biotic and abiotic stressors, resulting in declining population and shifts in ecosystem functioning.

Science recently released a special issue on defaunation, which spanned seven articles detailing the recent decline in animal species diversity and abundance.  Among others, the issue included two peer-reviewed articles, an opinion piece, and an analysis of national policies tied to global and local conservation strategies.  The statistics associated with defaunation are sobering, but the issue presents a few solutions to help us curb this global environmental crisis.

First, a damage assessment.  According to Defaunation in the Anthropocene, between 11,000 and 58,000 species go extinct each year.  At least 16% of all vertebrate species are endangered or threatened, and there’s been a 28% decline in their abundances since the 1970s.  Approximately 40% of invertebrate species are considered threatened, though less than 1% of described invertebrates have been assessed.  There is data to suggest that invertebrate species’ abundances are also decreasing, but it’s difficult to put an exact number on that decline since they are not as well monitored as vertebrates.  On a global scale, these statistics may be underestimated because our monitoring practices bias our data toward specific taxa.  Groups of large and charismatic organisms, like mammals and birds, get most of the attention because they are easier to monitor and more sympathetic than invertebrates, amphibians, and reptiles.  In some systems this is beneficial, where large mammals and birds are the most threatened and contribute significantly greater function to an ecosystem than smaller organisms.  However the opposite can be true in other instances, so it is critical that we prioritize greater sampling of underrepresented groups.

Additionally, there is concern that such measures of declines in species and abundance may not reflect the true extent of our ecological troubles.  Shifts in ecosystem compositions may not be reflected in a given measurement of biodiversity, yet are nonetheless indicative of environmental change.  The primary goal behind many conservation strategies has been to restore a species or population to a certain number.  While population viability is critical for any species, the authors argue that ecosystem functionality is a useful yet underutilized goal for conservationists.  With this goal, the composition of an ecosystem (i.e. the identity and abundance of resident species) can be more flexible, as long as the ecosystem functions in a similar way.  The issue with this then becomes how to measure ecosystem function, or rather, against what do we compare it?  Do we set an arbitrary time in history that we would like to restore it to, or do we attempt to maintain its function while integrated with a unique environment managed by humans?  Some proponents of the latter strategy see historical comparisons as unrealistic and uninformative, especially given our changing climate.  Regardless, restoring the functionality of ecosystems is a key predictor of the future success of not only animal and plant populations, but the human population as well.

One of the strongest arguments this issue makes derives from its use of specific economic values of animals and ecosystems.  According to the article Wildlife decline and social conflict, the harvest of land and sea animals accounts for $400 billion annually around the world.  Defaunation in the Anthropocene claims that pest control by native U.S. predators is worth approximately $4.5 billion annually, and that the decline in North American bat populations (a specific type of pest controller) has cost the agriculture industry $22 billion in lost productivity.  Insect pollinators are required for about 75% of the world’s food crops, and are therefore responsible for approximately 10% of the economic value of the entire world’s food supply.  According to the World Bank, food and agriculture represents about 10% of global GDP, which in 2012 was estimated at $72 trillion.  If we take total food supply to be approximately $7.2 trillion (again, estimating), then insect pollinators are worth around $72 billion dollars.  These estimates apply tangible figures to a broad and occasionally overwhelming issue, and may be good starting points to unite many different stakeholders under a common currency.

The article Reversing defaunation: Restoring species in a changing world details the different strategies conservationists use to preserve species abundances and their associated ecosystem functions.  These strategies can broadly be grouped into two categories, translocations and introductions.  Translocations involve moving individuals within their indigenous range to either reinforce a local population or to reintroduce them following a local extinction.  Introductions, on the other hand, move species outside of their indigenous range to prevent a global extinction of a species or to replace a lost ecosystem function.  Though planning a conservation strategy in terms of these labels can be useful for setting long-term goals, they are not mutually exclusive.  Certain strategies can incorporate aspects of both translocation and introduction, or can introduce a species both to preserve its numbers and to restore ecosystem functionality.  Therefore, it’s best to use these terms as guidelines for how to measure the success of any plan rather than as constraining requirements.

These losses in biodiversity, and their associated shifts in ecosystem functioning, are primarily driven by a combination of over-hunting, habitat destruction, impacts of invasive species, climate change, and disease.  The Defaunation articles make a point of addressing national policies aimed at preventing species extinctions, namely those regarding over-hunting and poaching.  Many of these policies simply impose penalties for illegal hunting rather than address the underlying causes of the issue, poverty and starvation.  While it’s unrealistic to expect a conservation plan to alleviate world hunger and income inequality, it may be useful to consider animal overexploitation as an unintended side-effect of the economic cycle caused by scarcity.  Supply and demand states that as a species becomes less common, its value on the market rises.  However, this scarcity also leads to a reduction in the amount caught per unit effort.  The rise in price drives a greater hunting effort by the sellers, further decreasing the population, and the cycle begins again.  Since many of these hunters are using their profits to feed themselves or their families, simply enacting penalties for poaching may not have the intended effect.  Overhunting is not a simple problem, and most likely will not have a simple solution.  However, the only way we can begin to address it is by determining its causes.

September 30, 2014